

September 19, 2006

Robert Michel- Brush Wellman Inc Manager, Market and Business Development

Background / Summary

- Earlier fabrication methods used "Be Hog-out" approach to produce major gimbal structures
- While technically successful, high cost & long fabrication lead-times will be unacceptable for future generation systems
- SBIR MDA04-132; "Advanced Light-Weight On-Orbit Gimbal Systems" focused on Improving Performance & Manufacturability of Major Gimbal Structures for Future MDA/AF Space Systems
- Phase I results indicate that welded "AlBe" (AlBeWeld™) structures can meet the requirements for Future Gimbal Structures with dramatic reductions in both cost & fabrication lead-times

Program Objectives

- Phase I Objectives
 - Develop lower cost gimbal
 - Improve lead time
 - Improve manufacturability
 - Measure and evaluate EB welding capabilities
 - Demonstrate repair techniques and verify structural and thermal integrity of repair

Be -vs- AlBe Design Considerations

- AlBe is almost equal to "Be" in thermal conductivity with slightly higher CTE (Still ~50% of AI)
- AlBe approaches the lightweight stiffness performance of "Be" with material costs at ~60% of "Be"
- Has capability to weld structural components together which results in dramatic reductions of input material
- AlBe machines like "Al" vs "Be"; Machining Time ~50% that of "Be"
 - Still requires environmental controls for H & S
- Vendor base for machining "AlBe" is larger than "Be"
- Welded "AlBe" Structures Can Be Repaired in Case of Damage during Assembly & Integration

Original "Be Hog-out" Approach Required a Large Block of "Be" with Heavy Machining

AlBeWeld™ Yoke Design

Full Scale Yoke is Five-piece Design

- Used Three piece / Half yoke for Phase I- due to

funding

Material Layout- EB Welded Approach

Input Material Comparison

"Hog-out" Option

One Input Block

14.0"x14.3"x24.50"

328.6 Lbs of Be

372.7 Lbs of AlBe

"AlBe" Weld Option

Three Input Blocks

15.5"x2.7"x14.25"

7.72"x4.2"x6.5"

5.7"x8.7"x13.75"

113.1 Lbs of AlBe

"AlBe" Weld Option Provides a 70% Material Reduction

"AlBe" Material ~ 40% Lower Cost / Pound vs "Be"

Three Piece EB Welding Fixture

Welding Fixture Design

Welding Fixture

Welding Fixture

Post Welding

Upper Weld Section

Base Weld Section

Complete Half Yoke

AlBeWeld™ Information

- Electron Beam Welding is a welding process that:
 - Utilizes a precise finely focused stream of electrons as the energy source for melting
 - Achieves heat concentrations up to 500 times that of conventional welding methods
 - Uses lower energy than conventional welding methods
 - Requires no filler alloy
 - Results in minimal distortion

AlBeWeld™ Summary

- Tensile properties are above AM162H specification
- Microstructure in weld zone finer than base metal
- Low Distortion process

0.125" thick

0.350" thick

0.500" thick

AlBeWeld™ Mechanical Properties

AlBeWeld™ Base Metal/Weld Zone Interface

Weld Zone Microstructure

AlBeWeld™ Distortion

- Weld Joint Shrinkage
 - -Typically less than 0.0015"
- Angular Distortion
 - -Typically less than 0.12°

Repairability

Repairability coupons were designed, fabricated

Coupons were tested for thermal and mechanical

performance

EB Welded Coupon CTE Test Results

 No apparent difference between welded and un-welded coupons

EB Welded Coupon Tensile Coupon

Hole D is un-welded end

EB Welded Coupon Tensile Test Results

Hole C-Welded End

EB Welded Coupon Tensile Test Results

Un-Welded End

Example of Welded AlBe Assembly Being Repaired vs "Scrapped"

Original Part Damaged During Assembly

Part Repaired by Welding Replacement Component into Damaged Area

Repair
Designed for
Replacement
Component

Summary

- EB Welding of AlBe Gimbal Structure was Successful
- It is a Cost Effective Manufacturing Process
- It Can Increase Manufacturing Through-put
- Change from Be to AlBe Will Not Compromise System Performance
- The New Design is 13% heavier due to property differences between Be and AIBe

Program Objectives

- Phase II Objectives
 - Manufacture five piece Gimbal
 - Manufacture Gimbal ring using near-

net-shape technology

